WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/1016305686

Molecular Mechanisms of Xeroderma Pigmentosum

To understand the molecular mechanisms of XP, XP mouse models have been used, and mice deficient in XPA, XPC, XPD, XPG, XPF, and XPA/CSB have been produced and analysed. This title includes a chapter that analyzes the world distribution of XP and shows that Japan has the highest incidence of XP and of varying complementation groups.

Open All Close All

http://schema.org/about

http://schema.org/description

  • "To understand the molecular mechanisms of XP, XP mouse models have been used, and mice deficient in XPA, XPC, XPD, XPG, XPF, and XPA/CSB have been produced and analysed. A recent elegant technique of targeting gene replacement in mouse embryonic stem cells has provided researchers with the ability to generate mutant mice defective in any specific gene(s). 32 Animals generated in this way display phenotypes and symptoms of XP patients, and have provided valuable tools to understand how and where the deficiency in DNA repair may lead to tumor formation, and also in studies of developmental biology and the aging process. Mouse studies have recently contributed to our understanding of the role of ink4a-Arf in increasing the risk of melanoma photocarcinogenesis in an XPC mutant background. As with many other genetic defects, the distribution of XP globally is not uniform. In most cases the frequency of mutation of a particular trait depends when and where a specific mutation arose."
  • "To understand the molecular mechanisms of XP, XP mouse models have been used, and mice deficient in XPA, XPC, XPD, XPG, XPF, and XPA/CSB have been produced and analysed. This title includes a chapter that analyzes the world distribution of XP and shows that Japan has the highest incidence of XP and of varying complementation groups."@en
  • "Xeroderma pigmentosum (XP), meaning parchment skin and pigmentary dist- bance, is a rare and mostly autosomal recessive genetic disorder that was originally named by two dermatologists, the Austrian Ferdinand Ritter von Hebra and his H- garian son in law Moritz Kaposi in 1874i and 1883. 2 The earliest published record (PubMed) available on the internet is a publication in 1949 by Ulicna Zapletalova under the title, "Contribution to the pathogenesis of xeroderma pigmentosum". ^ It was in the late 1960s when James Cleaver (contributor of Chapter 1 of this book), at the University of California, San Francisco, while working on nucleotide excision repair (NER), read an article in a local newspaper about XP and soon after obtained a skin biopsy from a patient suffering from XP that showed that cells from it were deficient in NER. Thus, his studies led to the discovery that indeed this genetic defect was due to mutations in DNA repair genes that imbalance the NER pathway. ^. s The discovery paved the way for further exploration of the link between DNA damage, mutagenesis, neoplastic transformation and DNA repair diseases. Since then, 4,088 papers, incl- ing excellent reviews, on XP are listed on the internet (PubMed data, February 2008), and an XP Society has been established in the USA (http://www. xps. org) and an XP Support Group in the United Kingdom (www. xpsupportgroup. org. uk)."

http://schema.org/genre

  • "Electronic books"
  • "Electronic books"@en

http://schema.org/name

  • "Molecular Mechanisms of Xeroderma Pigmentosum"@en
  • "Molecular Mechanisms of Xeroderma Pigmentosum"
  • "Molecular mechanisms of xeroderma pigmentosum"@en
  • "Molecular mechanisms of xeroderma pigmentosum"