WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/12226783

Nonlinear optical properties and structural characteristics of ionically self-assembled nanoscale polymer films influenced by ionic concentration and incorporation of monomer chromophores

Ionically self-assembled monolayer (ISAM) films are typically an assemblage of oppositely charged polymers built layer by layer through coulombic attraction utilizing an environmentally friendly process to form ordered structures that are uniform, molecularly smooth, and physically robust. ISAM films have been shown to be capable of the noncentrosymmetric order requisite for a second-order nonlinear optical response. However, films fabricated with a nonlinear optical (NLO) polymer result in significant cancellation of the chromophore orientations. This cancellation occurs by two mechanisms: competitive orientation due to the ionic bonding of the polymer chromophore with the subsequent polycation layer, and random orientation of the chromophores within the bulk of each polyanion layer. A reduction in film thickness accompanied by an increase in net polar ordering is one possible avenue to obtain the second-order nonlinear optical susceptibility chi(2) necessary for electro-optic devices. In this thesis, we will discuss the structural characteristics of ISAM films and explore three novel approaches to obtain the desired characteristics for nonlinear optical response. One approach involves the variation of solution parameters of several different cationic polymers separately from the polyanion solution in order to reduce the competitive chromophore orientation at the layer interfaces and to reduce the thickness of the inactive polycation layer.

Open All Close All

http://schema.org/description

  • "Ionically self-assembled monolayer (ISAM) films are typically an assemblage of oppositely charged polymers built layer by layer through coulombic attraction utilizing an environmentally friendly process to form ordered structures that are uniform, molecularly smooth, and physically robust. ISAM films have been shown to be capable of the noncentrosymmetric order requisite for a second-order nonlinear optical response. However, films fabricated with a nonlinear optical (NLO) polymer result in significant cancellation of the chromophore orientations. This cancellation occurs by two mechanisms: competitive orientation due to the ionic bonding of the polymer chromophore with the subsequent polycation layer, and random orientation of the chromophores within the bulk of each polyanion layer. A reduction in film thickness accompanied by an increase in net polar ordering is one possible avenue to obtain the second-order nonlinear optical susceptibility chi(2) necessary for electro-optic devices. In this thesis, we will discuss the structural characteristics of ISAM films and explore three novel approaches to obtain the desired characteristics for nonlinear optical response. One approach involves the variation of solution parameters of several different cationic polymers separately from the polyanion solution in order to reduce the competitive chromophore orientation at the layer interfaces and to reduce the thickness of the inactive polycation layer."@en

http://schema.org/name

  • "Nonlinear optical properties and structural characteristics of ionically self-assembled nanoscale polymer films influenced by ionic concentration and incorporation of monomer chromophores"@en