WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/1406119014

Stearoyl-CoA desaturase genes in lipid metabolism

Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) expressed in humans. At first glance, stearoyl-CoA desaturase enzyme would be considered a housekeeping enzyme because it synthesizes oleate a well-known fatty acid that is abundant in many dietary sources. However numerous studies have shown that SCD is a very highly regulated enzyme that features in so many physiological processes ranging from fat differentiation, carbohydrate and fat metabolism, inflammation and cancer. The editor's studies using stearoyl-CoA desaturase knockout (SCD1-/- ) mice and studies of other investigators using pharmacological approaches to reduce SCD1 expression in mouse tissues have all established that the expression of SCD1 gene isoform represents a key step in partitioning of lipids between storage and oxidation. High SCD expression favors fat storage leading to obesity while reduced SCD expression favors fat burning and leanness. Although these studies clearly illustrated that SCD1 expression is involved in the development of obesity and insulin resistance, questions remain in the elucidation of the mechanisms involved and role of SCD1. This book includes chapters by leading researchers on SCD Genes in the brain, heart, muscle, liver metabolism, Colitis, and more.

Open All Close All

http://schema.org/about

http://schema.org/description

  • "Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) expressed in humans. At first glance, stearoyl-CoA desaturase enzyme would be considered a housekeeping enzyme because it synthesizes oleate a well-known fatty acid that is abundant in many dietary sources. However numerous studies have shown that SCD is a very highly regulated enzyme that features in so many physiological processes ranging from fat differentiation, carbohydrate and fat metabolism, inflammation and cancer. The editor's studies using stearoyl-CoA desaturase knockout (SCD1-/- ) mice and studies of other investigators using pharmacological approaches to reduce SCD1 expression in mouse tissues have all established that the expression of SCD1 gene isoform represents a key step in partitioning of lipids between storage and oxidation. High SCD expression favors fat storage leading to obesity while reduced SCD expression favors fat burning and leanness. Although these studies clearly illustrated that SCD1 expression is involved in the development of obesity and insulin resistance, questions remain in the elucidation of the mechanisms involved and role of SCD1. This book includes chapters by leading researchers on SCD Genes in the brain, heart, muscle, liver metabolism, Colitis, and more."@en
  • "Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) express"@en
  • "Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) expressed in humans. At first glance, stearoyl-CoA desaturase enzyme would be considered a housekeeping enzyme because it synthesizes oleate a well-known fatty acid that is abundant in many dietary sources. However numerous studies have shown that SCD is a very highly regulated enzyme that features in so many physiological processes ranging from fat differentiation, carbohydrate and fat metabolism, inflammation and cancer. The editor's studies using stearoyl-CoA desaturase knockout (SCD1-/- ) mice and studies of other investigators using pharmacological approaches to reduce SCD1 expression in mouse tissues have all established that the expression of SCD1 gene isoform represents a key step in partitioning of lipids between storage and oxidation. High SCD expression favors fat storage leading to obesity while reduced SCD expression favors fat burning and leanness. Although these studies clearly illustrated that SCD1 expression is involved in the development of obesity and insulin resistance, questions remain in the elucidation of the mechanisms involved and role of SCD1. This book includes chapters by leading researchers on SCD Genes in the brain, heart, muscle, liver metabolism, Colitis, and more.--[Source inconnue]."
  • "James Ntambi has gathered top authors to write about the remarkable growth of research on the role of the stearoyl-CoA desaturase (SCD) genes in metabolism in different species including human. The book shows that beginning with simple cellular models of differentiation a broad and comprehensive analysis of the SCD gene family in a number of species and biological systems has been carried out over the course of the last twenty five years. SCD is a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids (MUFA) from saturated fatty acid precursors. At first glance, SCD would be considered a housekeeping enzyme because its product oleate is a well-known MUFA that is abundant in many dietary sources and tissue lipids. A particular highlight in the chapters of the book is that MUFAs may have signaling properties that regulate metabolism. For example, a proper ratio of saturated to MUFA contributes to membrane fluidity, and oleate has also been implicated as a mediator of signal transduction, cellular differentiation and metabolic homeostasis. It is also highlighted that SCD-1 repression mediates the metabolic effects of the hormone leptin. Conditional alleles and corresponding tissue-specific knockout mouse models for many of the SCD gene isorfms have provided a wealth of information on not only tissue-specific fatty acid metabolism but also the key transcription factors that regulate SCD expression under a variety of metabolic and genetic backgrounds. The studies described indicate that control of SCD expression occurs via a series of complex signal transduction schemes making SCD one of the most highly studied lipogenic gene families to date."

http://schema.org/genre

  • "Electronic books"@en

http://schema.org/name

  • "Stearoyl-CoA desaturase genes in lipid metabolism"@en
  • "Stearoyl-CoA desaturase genes in lipid metabolism"
  • "Stearoyl-CoA Desaturase Genes in Lipid Metabolism"
  • "Stearoyl-CoA Desaturase Genes in Lipid Metabolism"@en