"Équations aux dérivées partielles stochastiques." . . "Distribution (théorie des probabilités)." . . "Distribution (Probability theory)" . . . . "Équation différentielle partielle stochastique." . . "Distribution statistique." . . "Système dynamique." . . "Processos de Lévy." . . "Equacions diferencials parcials estocàstiques." . . "Differential equations, Partial." . . "Systèmes dynamiques." . . "Lévy processes." . . . . . . . . . . . . . . . . . "Livre électronique (Descripteur de forme)" . . . "The dynamics of nonlinear reaction-diffusion equations with small Lévy noise" . "The dynamics of nonlinear reaction-diffusion equations with small Lévy noise"@en . . . . "The dynamics of nonlinear reaction-diffusion equations with small lévy noise" . . . . . "Electronic books" . "This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states." . "This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."@en . . . . . . . . . . . . "Llibres electrònics" . . . . . . . . . . . . . "Ressource Internet (Descripteur de forme)" . . "Online-Publikation" . . . "The Dynamics of nonlinear reaction-diffusion equations with small Lévy noise" . "The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise" . . . . . . "Stochastic partial differential equations." . . "Differentiable dynamical systems." . . "Processus de Lévy." . . "Équation de réaction-diffusion." . . "Lévy, Processus de." . .