WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/1807775019

Visual Routines

This paper examines the processing of visual information beyond the creation of the early representations. A fundamental requirement at this level is the capacity to establish visually abstract shape properties and spatial relations. This capacity plays a major role in object recognition, visually guided manipulation, and more abstract visual thinking. The proficiency of the human system in analyzing spatial information far surpasses the capacities of current artificial systems. The study of the computations that underlie this competence may therefore lead to the development of new more efficient processors for the spatial analysis of visual information. It is suggested that the perception of spatial relations is achieved by the application to the base representations of visual routines that are composed of sequences of elemental operations. Routines for different properties and relations share elemental operations. Using a fixed set of basic operations, the visual system can assemble different routines to extract an unbounded variety of shape properties and spatial relations. A number of plausible basic operations are suggested, based primarily on their potential usefulness, and supported in part by empirical evidence. The operations discussed include shifting of the processing focus, indexing to an odd-man-out location, bounded activation, boundary tracing, and marking. The problem of assembling such elemental operations into meaningful visual routines is discussed briefly.

Open All Close All

http://schema.org/description

  • "This paper examines the processing of visual information beyond the creation of the early representations. A fundamental requirement at this level is the capacity to establish visually abstract shape properties and spatial relations. This capacity plays a major role in object recognition, visually guided manipulation, and more abstract visual thinking. The proficiency of the human system in analyzing spatial information far surpasses the capacities of current artificial systems. The study of the computations that underlie this competence may therefore lead to the development of new more efficient processors for the spatial analysis of visual information. It is suggested that the perception of spatial relations is achieved by the application to the base representations of visual routines that are composed of sequences of elemental operations. Routines for different properties and relations share elemental operations. Using a fixed set of basic operations, the visual system can assemble different routines to extract an unbounded variety of shape properties and spatial relations. A number of plausible basic operations are suggested, based primarily on their potential usefulness, and supported in part by empirical evidence. The operations discussed include shifting of the processing focus, indexing to an odd-man-out location, bounded activation, boundary tracing, and marking. The problem of assembling such elemental operations into meaningful visual routines is discussed briefly."@en

http://schema.org/name

  • "Visual Routines"@en