WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/1920941177

Holoscopy

Holoscopy is a new tomographic imaging modality that combines techniques of digital holography with Fourier-domain optical coherence tomography (FD-OCT). Dierck Hillmann gives a theoretical introduction to the mathematics and physics of holoscopy and develops an efficient numerical reconstruction procedure. Compared to FD-OCT, holoscopy provides unique advantages by enabling tomographic imaging without a limited depth of focus, but results in an increased numerical cost for reconstruction. In further chapters, the author introduces techniques for FD-OCT that are relevant to holoscopy as well. He demonstrates and compares numerical reconstruction methods for FD-OCT and shows how motion and dispersion artifacts in FD-OCT can be numerically compensated. Contents Theoretical Introduction to Optical Coherence Tomography and Digital Holography FD-OCT Signal Processing Using the Non-Equispaced Fast Fourier Transform Motion and Dispersion Correction in FD-OCT Holoscopy Target Groups Academics and practitioners in the fields of computer science, optical coherence tomography, digital holography, and medical imaging. The Author Dierck Hillmann received his doctoral degree in the group of Gereon Hüttmann at the Institute of Biomedical Optics in Lübeck and is currently working for a leading company in the fields of science and photonics. The Editor The series Aktuelle Forschung Medizintechnik is edited by Thorsten M. Buzug.

Open All Close All

http://schema.org/description

  • "Holoscopy is a new tomographic imaging modality that combines techniques of digital holography with Fourier-domain optical coherence tomography (FD-OCT). Dierck Hillmann gives a theoretical introduction to the mathematics and physics of holoscopy and develops an efficient numerical reconstruction procedure. Compared to FD-OCT, holoscopy provides unique advantages by enabling tomographic imaging without a limited depth of focus, but results in an increased numerical cost for reconstruction. In further chapters, the author introduces techniques for FD-OCT that are relevant to holoscopy as well."
  • "Holoscopy is a new tomographic imaging modality that combines techniques of digital holography with Fourier-domain optical coherence tomography (FD-OCT). Dierck Hillmann gives a theoretical introduction to the mathematics and physics of holoscopy and develops an efficient numerical reconstruction procedure. Compared to FD-OCT, holoscopy provides unique advantages by enabling tomographic imaging without a limited depth of focus, but results in an increased numerical cost for reconstruction. In further chapters, the author introduces techniques for FD-OCT that are relevant to holoscopy as well. He demonstrates and compares numerical reconstruction methods for FD-OCT and shows how motion and dispersion artifacts in FD-OCT can be numerically compensated. Contents Theoretical Introduction to Optical Coherence Tomography and Digital Holography FD-OCT Signal Processing Using the Non-Equispaced Fast Fourier Transform Motion and Dispersion Correction in FD-OCT Holoscopy Target Groups Academics and practitioners in the fields of computer science, optical coherence tomography, digital holography, and medical imaging. The Author Dierck Hillmann received his doctoral degree in the group of Gereon Hüttmann at the Institute of Biomedical Optics in Lübeck and is currently working for a leading company in the fields of science and photonics. The Editor The series Aktuelle Forschung Medizintechnik is edited by Thorsten M. Buzug."@en

http://schema.org/genre

  • "Electronic books"@en
  • "Online-Publikation"

http://schema.org/name

  • "Holoscopy"@en
  • "Holoscopy"