WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/29303264

The self-avoiding walk

The self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition-a path on a lattice that does not visit the same site more than once-it is difficult to analyze mathematically. TheSelf-Avoiding Walkprovides the firstunified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in chemistry, and to give an introduction to some of the nonrigorous methods used in those fields. Topics covered in the bookinclude: the lace expansion and its application to the self-avoiding walk in more than four dimensions where most issues are now resolved; an introduction to the nonrigorous scaling theory; classical work of Hammersley and others; a new exposition of Kesten's pattern theorem and its consequences; a discussion of the decay of the two-point function and its relation to probabilistic renewal theory; analysis of Monte Carlo methods that have been used to study the self-avoiding walk; the role of the self-avoiding walk in physical and chemical applications. Methods from combinatorics, probability theory, analysis, and mathematical physics play important roles. The book is highly accessible to both professionals and graduate students in mathematics, physics, and chemistry.

Open All Close All

http://schema.org/about

http://schema.org/description

  • "The self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition-a path on a lattice that does not visit the same site more than once-it is difficult to analyze mathematically. TheSelf-Avoiding Walkprovides the firstunified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in chemistry, and to give an introduction to some of the nonrigorous methods used in those fields. Topics covered in the bookinclude: the lace expansion and its application to the self-avoiding walk in more than four dimensions where most issues are now resolved; an introduction to the nonrigorous scaling theory; classical work of Hammersley and others; a new exposition of Kesten's pattern theorem and its consequences; a discussion of the decay of the two-point function and its relation to probabilistic renewal theory; analysis of Monte Carlo methods that have been used to study the self-avoiding walk; the role of the self-avoiding walk in physical and chemical applications. Methods from combinatorics, probability theory, analysis, and mathematical physics play important roles. The book is highly accessible to both professionals and graduate students in mathematics, physics, and chemistry."@en
  • "The self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition-a path on a lattice that does not visit the same site more than once-it is difficult to analyze mathematically. The Self-Avoiding Walk provides the first unified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in che"@en
  • "A self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation."@en

http://schema.org/genre

  • "Electronic books"@en
  • "Libros electrónicos"

http://schema.org/name

  • "The self-avoiding walk"@en
  • "The self-avoiding walk"
  • "The Self-avoiding walk"
  • "The Self-Avoiding Walk"@en
  • "The Self-Avoiding Walk"