# Qualitative process theory

#### http://schema.org/description

• "Objects move, collide, flow, bend, heat up, cool down, stretch, compress . and boil . These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called the quantity space. This paper describes the basic concepts of qualitative process theory, several different kinds of reasoning that can be performed with them, and discusses its implications for causal reasoning. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string, but not push with it."@en
• "Things move, collide, flow, bend heat up, cool down, stretch, break, and boil these and other things that happen to cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make machines that interact significantly with the physical world we must understand qualitative reasoning about processes, their effects, and their limits. Qualitative Process theory defines a simple notion of Reasoning about process also motivates a new qualitative representation for quantity, the Quantity Space. This paper includes the basic definitions of Qualitative Process theory, describes several different kinds of reasoning that can be performed with them, and discusses its implications for causal reasoning. The use of the theory is illustrated by several examples, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string, but notpush with it. (Author)."@en
• "Objects move, collide, flow, bend, heat up, cool down, stretch, compress, and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative Process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called the quantity space. This report describes the basic components of Qualitative Process theory, several different kinds of reasoning that can be performed with them, and discusses its impact on other issues in common sense reasoning about the physical world, such as casual reasoning and measurement interpretation. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string, but not push with it. This report also describes GIZMO, an implemented computer program which uses Qualitative Process theory to make predictions and interpret simple measurements. The representations and algorithms used in GIZMO are described in detail, and illustrated using several examples. (Author)."@en

#### http://schema.org/name

• "Qualitative process theory"@en
• "Qualitative process theory /"
• "Qualitative process theory /"@en
• "Qualitative process theory."@en
• "Qualitative Process Theory."@en
• "Qualitative Process Theory"@en