WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/3513463

Engineering Optics

"Which area do you think I should go into?" or "Which are the areas that have the brightest future?" are questions that are frequently asked by students trying to decide on a field of specialization. My advice has always been to pick any field that combines two or more disciplines such as Nuclear Physics, Biomedical Engineering, Optoelectronics, or even Engineering Optics. With the ever growing complexity of today's science and technology, many a problem can be tackled only with the cooperative effort of more than one discipline. Engineering Optics deals with the engineering aspects of optics, and its main emphasis is on applying the knowledge. of optics to the solution of engineering problems. This book is intended both for the physics student who wants to apply his knowledge of optics to engineering problems and for the engineering student who wants to acquire the basic principles of optics. The material in the book was arranged in an order that would progres sively increase the student's comprehension of the subject. Basic tools and concepts presented in the earlier chapters are then developed more fully and applied in the later chapters. In many instances, the arrangement of the material differs from the true chronological order. The following is intended to provide an overview of the organization of the book. In this book, the theory of the Fourier transforms was used whenever possible because it provides a simple and clear explanation for many phenomena in optics. Complicated mathematics have been com pletely eliminated.

Open All Close All

http://schema.org/about

http://schema.org/description

  • "'Engineering Optics' is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics."
  • "Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging."
  • ""Which area do you think I should go into?" or "Which are the areas that have the brightest future?" are questions that are frequently asked by students trying to decide on a field of specialization. My advice has always been to pick any field that combines two or more disciplines such as Nuclear Physics, Biomedical Engineering, Optoelectronics, or even Engineering Optics. With the ever growing complexity of today's science and technology, many a problem can be tackled only with the cooperative effort of more than one discipline. Engineering Optics deals with the engineering aspects of optics, and its main emphasis is on applying the knowledge. of optics to the solution of engineering problems. This book is intended both for the physics student who wants to apply his knowledge of optics to engineering problems and for the engineering student who wants to acquire the basic principles of optics. The material in the book was arranged in an order that would progres sively increase the student's comprehension of the subject. Basic tools and concepts presented in the earlier chapters are then developed more fully and applied in the later chapters. In many instances, the arrangement of the material differs from the true chronological order. The following is intended to provide an overview of the organization of the book. In this book, the theory of the Fourier transforms was used whenever possible because it provides a simple and clear explanation for many phenomena in optics. Complicated mathematics have been com pletely eliminated."@en
  • "The first edition of this textbook was published only last year, and now, the publisher has decided to issue a paperback edition. This is intended to make the text more affordable to everyone who would like to broaden their knowledge of modem problems in optics. The aim of this book is to provide a basic understanding of the impor tant features of the various topics treated. A detailed study of all the sub jects comprising the field of engineering optics would fill several volumes. This book could perhaps be likened to a soup: it is easy to swallow, but sooner or later heartier sustenance is needed. It is my hope that this book will stimulate your appetite and prepare you for the banquet that could be yours. I would like to take this opportunity to thank those readers, especially Mr. Branislav Petrovic, who sent me appreciative letters and helpful com ments. These have encouraged me to introduce a few minor changes and improvements in this edition."

http://schema.org/genre

  • "Electronic books"
  • "Electronic books"@en
  • "Handboeken (vorm)"

http://schema.org/name

  • "Engineering Optics"@en
  • "Engineering Optics"
  • "光工学"
  • "Hikari kōgaku"
  • "Hikari kōgaku"@ja
  • "Engineering optics"
  • "Engineering optics"@en

http://schema.org/workExample