WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/398682

Mathematics for Physical Chemistry a Guide to Calculation in Physical and General Chemistry

Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data. * Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and summary * Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory * Provides chemistry specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics.

Open All Close All

http://schema.org/about

http://schema.org/description

  • "Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data. * Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and summary * Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory * Provides chemistry specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics."@en
  • "Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data. * Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and summary * Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory * Provides chemistry specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics."
  • "This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text."
  • "Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data."
  • ""Principal Facts and Ideas. Problem solving is the principal tool for learning physical chemistry. Problem solving can be approached in a systematic way. Many problems involve numerical calculations involving measurable quantities. A measured quantity consists of a number and a unit of measurement. The SI units have been officially adopted by international organizations of physicists and chemists. Consistent units must be used in any calculation. The factor-label method can be used to convert from one unit of measurement to another. Reported values of all quantities should be rounded so that insignifi- cant digits are not reported. Objectives After you have studied the chapter, you should be able to: analyze a problem and design a procedure for solving the problem; 4 1. Problem Solving and Numerical Mathematics carry out the numerical procedures use in solving a simple problem; use numbers and units correctly to express measured quantities; understand the relationship of uncertainties in measurements to the use of significant digits; use consistent units, especially the SI units, in equations and formulas; use the factor-label method to convert from one unit of measurement to another. 1.1 Problem Solving Techniques of problem solving are applicable to many intellectual areas. There is a useful little book on problem solving by G. Polya, 1 and much of our discussion of problem solving is based on this book. Most physical chemistry problems are stated verbally, like the so-called 'word problems' of elementary school. The information contained in the statement of the problem generally includes a statement of the physical system involved, some information about the state of the system, and a statement of the desired outcome"--"
  • ""Principal Facts and Ideas. Problem solving is the principal tool for learning physical chemistry. Problem solving can be approached in a systematic way. Many problems involve numerical calculations involving measurable quantities. A measured quantity consists of a number and a unit of measurement. The SI units have been officially adopted by international organizations of physicists and chemists. Consistent units must be used in any calculation. The factor-label method can be used to convert from one unit of measurement to another. Reported values of all quantities should be rounded so that insignifi- cant digits are not reported. Objectives After you have studied the chapter, you should be able to: analyze a problem and design a procedure for solving the problem; 4 1. Problem Solving and Numerical Mathematics carry out the numerical procedures use in solving a simple problem; use numbers and units correctly to express measured quantities; understand the relationship of uncertainties in measurements to the use of significant digits; use consistent units, especially the SI units, in equations and formulas; use the factor-label method to convert from one unit of measurement to another. 1.1 Problem Solving Techniques of problem solving are applicable to many intellectual areas. There is a useful little book on problem solving by G. Polya, 1 and much of our discussion of problem solving is based on this book. Most physical chemistry problems are stated verbally, like the so-called 'word problems' of elementary school. The information contained in the statement of the problem generally includes a statement of the physical system involved, some information about the state of the system, and a statement of the desired outcome"--"@en
  • "Offering comprehensive coverage of the mathematics needed for undergraduate-level physical chemistry, this book also serves as a reference for graduate students and practising chemists."
  • "Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediat."@en

http://schema.org/genre

  • "Electronic books"@en
  • "Electronic books"
  • "Příručky"
  • "Lehrbuch - Mathematik"
  • "Livres électroniques"
  • "Llibres electrònics"
  • "Matériel didactique"
  • "Lehrbuch"

http://schema.org/name

  • "Mathematics for Physical Chemistry a Guide to Calculation in Physical and General Chemistry"@en
  • "Mathematics for Physical Chemistry"@en
  • "Mathematics for Physical Chemistry"
  • "Mathematics for physical chemistry Previous ed.: 1999"
  • "Mathematics for physical chemistry"
  • "Mathematics for physical chemistry"@en

http://schema.org/workExample