WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/768525088

Elasticity

This is a first year graduate textbook on linear elasticity, being based on a one semester course taught by the author at the University of Michigan. It is written with the practical engineering reader in mind, dependence on previous knowledge of solid mechanics, continuum, mechanics or mathematics being minimized. Most of the text should be readily intelligible to a reader with an undergraduate background of one or two courses in elementary strength of materials and a rudimentary knowledge of partial differentiation. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. The topics covered are chosen with a view to modern research applications in fracture mechanics, composite materials, tribology and numerical methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermoelasticity, singular asymptotic stress fields and three-dimensional problems. Problems suitable for class use are included at the end of most of the chapters. These are expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to `verify' that a given candidate stress function is appropriate to the problem. The text is therefore written in such a way as to enable the student to approach such problems deductively. A solutions manual is available directly from the author (e-mail: [email protected]).

Open All Close All

http://schema.org/about

http://schema.org/description

  • "This is a first year graduate textbook on linear elasticity, being based on a one semester course taught by the author at the University of Michigan. It is written with the practical engineering reader in mind, dependence on previous knowledge of solid mechanics, continuum, mechanics or mathematics being minimized. Most of the text should be readily intelligible to a reader with an undergraduate background of one or two courses in elementary strength of materials and a rudimentary knowledge of partial differentiation. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. The topics covered are chosen with a view to modern research applications in fracture mechanics, composite materials, tribology and numerical methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermoelasticity, singular asymptotic stress fields and three-dimensional problems. Problems suitable for class use are included at the end of most of the chapters. These are expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to `verify' that a given candidate stress function is appropriate to the problem. The text is therefore written in such a way as to enable the student to approach such problems deductively. A solutions manual is available directly from the author (e-mail: [email protected])."@en
  • "The new edition includes over 300 end-of-chapter problems, expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to 'verify' that a given candidate stress function is appropriate to the problem."@en
  • "This is a first year graduate textbook in Linear Elasticity. It is written with the practical engineering reader in mind, dependence on previous knowledge of Solid Mechanics, Continuum Mechanics or Mathematics being minimized. Most of the text should be readily intelligible to a reader with an undergraduate background of one or two courses in elementary Mechanics of Materials and a rudimentary knowledge of partial differentiation. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. The Topics covered were chosen with a view to modern research applications in Fracture Mechanics, Composite Materials, Tribology and Numerical Methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermo elasticity, singular asymptotic stress fields and three-dimensional problems.; This second edition includes new chapters on antiplane stress systems, Saint-Venant torsion and bending and an expanded section on three-dimensional problems in spherical and cylindrical co-ordinate systems, including axisymmetric torsion of bars of non-uniform circular cross-section. It also includes over 200 end-of-chapter problems, which are expressed wherever possible in the form they would arise in engineering."
  • "This second edition includes new chapters on antiplane stress systems, Saint-Venant torsion and bending and an expanded section on three-dimensional problems in spherical and cylindrical coordinate systems, including axisymmetric torsion of bars of non-uniform circular cross-section. It also includes over 200 end-of-chapter problems, which are expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to 'verify' that a given candidate stress function is appropriate to the problem. Solution of these problems is considerably facilitated by the use of modern symbolic mathematical languages such as Maple® and Mathematica® and electronic files and hints on this method of solution can be accessed at the web site www.elasticity.org."
  • "This is a first year graduate textbook in Linear Elasticity. It is written with the practical engineering reader in mind, dependence on previous knowledge of solid mechanics, continuum mechanics or mathematics being minimized. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. The topics covered are chosen with a view to modern research applications in fracture mechanics, composite materials, tribology and numerical methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermoelasticity, singular asymptotic stress fields and three-dimensional problems. This third edition includes new chapters on complex variable methods, variational methods and three-dimensional solutions for the prismatic bar. Other detailed changes have been made throughout the work, many suggested by users of earlier editions. The new edition includes over 300 end-of-chapter problems, expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to 'verify' that a given candidate stress function is appropriate to the problem. Solution of these problems is considerably facilitated by the use of modern symbolic mathematical languages such as Maple and Mathematica. Electronic files and hints on this method of solution, as well as further supplementary software are available for download via the webpage for this volume on www.springer.com."@en
  • "This second edition includes new chapters on antiplane stress systems, Saint-Venant torsion and bending and an expanded section on three-dimensional problems in spherical and cylindrical coordinate systems, including axisymmetric torsion of bars of non-uniform circular cross-section. It also includes over 200 end-of-chapter problems, which are expressed wherever possible in the form they would arise in engineering - i.e. as a body of a given geometry subjected to prescribed loading - instead of inviting the student to 'verify' that a given candidate stress function is appropriate to the problem. Solution of these problems is considerably facilitated by the use of modern symbolic mathematical languages such as Maple and Mathematica and electronic files and hints on this method of solution can be accessed at the web site www.elasticity.org."

http://schema.org/genre

  • "Livres électroniques"
  • "Online-Publikation"
  • "Livre électronique (Descripteur de forme)"
  • "Ressource Internet (Descripteur de forme)"
  • "Electronic books"@en
  • "Electronic books"
  • "Llibres electrònics"

http://schema.org/name

  • "Elasticity"@it
  • "Elasticity"@en
  • "Elasticity"

http://schema.org/workExample