WorldCat Linked Data Explorer

http://worldcat.org/entity/work/id/793911206

Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations

A tutorial of phase-locked loops from analogue implementations to digital and optical designs. This text establishes a foundation of continuous-time analysis techniques and maintains a consistent notation as discrete-time and non-uniform sampling are presented. It examines charge pumps and the complementary sequential phase detector. Frequency synthesizers and digital divider analysis/techniques are also included in this edition.; Starting with a historical overview, presenting analogue, digital, and optical PLLs, discussing phase noise analysis, and including circuits/algorithms for data synchronization, this volume illustrates the techniques being used in this field.; The subjects covered include: development of phase-locked loops from analogue to digital and optical, with notation throughout; expanded coverage of the loop filters used to design second- and third-order PLLs; design examples on delay-locked loops used to synchronize circuits on CPUs and ASICS; new material on digital dividers that dominate a frequency synthesizer's noise floor; techniques to analytically estimate the phase noise of a divider; presentation of optical phase-locked loops with primers on the optical components and fundamentals of optical mixing; a section on automatic frequency control to provide frequency-locking of the lasers instead of phase-locking; and a presentation of charge pumps, counters, and delay-locked loops.; This volume includes the topics that should be of interest to wireless, optics, and the traditional phase-locked loop specialist to design circuits and software algorithms.

Open All Close All

http://schema.org/about

http://schema.org/description

  • "A tutorial of phase-locked loops from analogue implementations to digital and optical designs. This text establishes a foundation of continuous-time analysis techniques and maintains a consistent notation as discrete-time and non-uniform sampling are presented. It examines charge pumps and the complementary sequential phase detector. Frequency synthesizers and digital divider analysis/techniques are also included in this edition.; Starting with a historical overview, presenting analogue, digital, and optical PLLs, discussing phase noise analysis, and including circuits/algorithms for data synchronization, this volume illustrates the techniques being used in this field.; The subjects covered include: development of phase-locked loops from analogue to digital and optical, with notation throughout; expanded coverage of the loop filters used to design second- and third-order PLLs; design examples on delay-locked loops used to synchronize circuits on CPUs and ASICS; new material on digital dividers that dominate a frequency synthesizer's noise floor; techniques to analytically estimate the phase noise of a divider; presentation of optical phase-locked loops with primers on the optical components and fundamentals of optical mixing; a section on automatic frequency control to provide frequency-locking of the lasers instead of phase-locking; and a presentation of charge pumps, counters, and delay-locked loops.; This volume includes the topics that should be of interest to wireless, optics, and the traditional phase-locked loop specialist to design circuits and software algorithms."@en
  • "Phase-Locked Loops for Wireless Communications: Digitial, Analog and Optical Implementations, Second Edition presents a complete tutorial of phase-locked loops from analog implementations to digital and optical designs. The text establishes a thorough foundation of continuous-time analysis techniques and maintains a consistent notation as discrete-time and non-uniform sampling are presented. New to this edition is a complete treatment of charge pumps and the complementary sequential phase detector. Another important change is the increased use of MATLAB, implemented to provide more familiar graphics and reader-derived phase-locked loop simulation. Frequency synthesizers and digital divider analysis/techniques have been added to this second edition. Perhaps most distinctive is the chapter on optical phase-locked loops that begins with sections discussing components such as lasers and photodetectors and finishing with homodyne and heterodyne loops. Starting with a historical overview, presenting analog, digital, and optical PLLs, discussing phase noise analysis, and including circuits/algorithms for data synchronization, this volume contains new techniques being used in this field. Highlights of the Second Edition: Development of phase-locked loops from analog to digital and optical, with consistent notation throughout; Expanded coverage of the loop filters used to design second and third order PLLs; Design examples on delay-locked loops used to synchronize circuits on CPUs and ASICS; New material on digital dividers that dominate a frequency synthesizer's noise floor. Techniques to analytically estimate the phase noise of a divider; Presentation of optical phase-locked loops with primers on the optical components and fundamentals of optical mixing; Section on automatic frequency control to provide frequency-locking of the lasers instead of phase-locking; Presentation of charge pumps, counters, and delay-locked loops. The Second Edition includes the essential topics needed by wireless, optics, and the traditional phase-locked loop specialists to design circuits and software algorithms. All of the material has been updated throughout the book."@en
  • "Phase-Locked Loops for Wireless Communications: Digitial, Analog and Optical Implementations, Second Edition presents a complete tutorial of phase-locked loops from analog implementations to digital and optical designs. The text establishes a thorough foundation of continuous-time analysis techniques and maintains a consistent notation as discrete-time and non-uniform sampling are presented. New to this edition is a complete treatment of charge pumps and the complementary sequential phase detector. Another important change is the increased use of MATLAB®, implemented to provide more familiar graphics and reader-derived phase-locked loop simulation. Frequency synthesizers and digital divider analysis/techniques have been added to this second edition. Perhaps most distinctive is the chapter on optical phase-locked loops that begins with sections discussing components such as lasers and photodetectors and finishing with homodyne and heterodyne loops. Starting with a historical overview, presenting analog, digital, and optical PLLs, discussing phase noise analysis, and including circuits/algorithms for data synchronization, this volume contains new techniques being used in this field. Highlights of the Second Edition: Development of phase-locked loops from analog to digital and optical, with consistent notation throughout; Expanded coverage of the loop filters used to design second and third order PLLs; Design examples on delay-locked loops used to synchronize circuits on CPUs and ASICS; New material on digital dividers that dominate a frequency synthesizer's noise floor. Techniques to analytically estimate the phase noise of a divider; Presentation of optical phase-locked loops with primers on the optical components and fundamentals of optical mixing; Section on automatic frequency control to provide frequency-locking of the lasers instead of phase-locking; Presentation of charge pumps, counters, and delay-locked loops. The Second Edition includes the essential topics needed by wireless, optics, and the traditional phase-locked loop specialists to design circuits and software algorithms. All of the material has been updated throughout the book."

http://schema.org/genre

  • "Llibres electrònics"
  • "Ressource Internet (Descripteur de forme)"
  • "Livres électroniques"
  • "Electronic books"@en
  • "Electronic books"
  • "Livre électronique (Descripteur de forme)"

http://schema.org/name

  • "Phase-locked loops for wireless communications : digital, analog and optical implementations"
  • "Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations"@en
  • "Phase-Locked Loops for Wireless Communications Digital, Analog, and Optical Implementations"@en
  • "Phase-Locked Loops for Wireless Communications Digital, Analog, and Optical Implementations"
  • "Phase-locked loops for wireless communications : digital, analog and optical implementation"
  • "Phase-locked loops for wireless communications digital, analog, and optical implementations"@en
  • "Phase-locked loops for wireless communications digital, analog, and optical implementations"
  • "Phase-Locked Loops for Wireless Communications Digital, Analog and Optical Implementations"
  • "Phase-locked loops for wireless communications : digital, analog, and optical implementations"
  • "Phase-locked loops for wireless communications digital, analog and optical implementation"